
Comparative study of sensitive skin in Chinese female population

> Li Dongguang Liu Wei General Hospital of Air Force, Beijing

Pathogenesis of Sensitive Skin (SS)

- Skin barrier dysfunction
- Skin allergic condition
- Photosensitive reactions
- Neuronal irritancy
- Psychologic sensitivity
- Environmental pollutions

Chemical probes used for evaluation of SS

Lactic acid

Frosch P, Kligman AM. Method for appraising the sting capacity of topically applied substances. J Soc Cosmetic Chem.1977;28:197-209

Balsam Peru

Bowman JP, Kligman AM,et al.The use of chemical probes to assess the facial reactivity of woman,comparing their self-perception of sensitive skin. J.Cosmet.Sci., 51,267-273

Chlroform/methanol

Bowman JP, Kligman AM,et al.The use of chemical probes to assess the facial reactivity of woman,comparing their self-perception of sensitive skin. J.Cosmet.Sci., 51,267-273

Sodium Lauryl Sulfate, SLS

Tupker RA, et al. Guidelines on sodium lauryl sulfate (SLS)exposure tests. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1997: 37: 53-69.

Dimethyl Sulfoxide DMSO

Frosch P, et al. The response of human skin to dimethyl sulfoxide, British Journal of Dermatology 1980; 102: 263-274.

• <u>Capsaicin (TRPV1)</u>

Szolcsány J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides. 2004 Dec;38(6):377

Menthol

Kozyreva, et al.Agonist of TRPM8 channel, menthol, facilitates the initiation of thermoregulatory responses to external cooling. Journal of Thermal Biology 35 (2010):428

Ethanol and Benzolic acid

Farage et al. Sensory, clinical and physiological factors in sensitive skin: a review. Contact Dermatitis.2006;55:1-14

Phenoxyethanol

Effect of phenoxyethanol on inducing neuronal irritancy on skin as a marker for screening sensitive skin in asians

No consistence in methodologies

- Different signals and pathways
- Differences in recognition of sensory
- Complexity of sensitive skin
- Semi-objective methods

No gold standard for the evaluation of SS

Part I

Comparation of phenoxyethanol, lactic acid and capsaicin tests in evaluation of SS

Materials and Method

- 1.0% Phenoxyethanol/Carbapol
- **5%** Lactic acid/Water
- 0.001% Capsaicin/water

Materials and Method

- **30** Chinese female subjects
- 18-50 years old
- Inclusion & Exclusion criteria
- Constant temperature and humidity
- 3 days interval

Sensory parameters

- Itching
- Burning
- Stinging

Grading standard						
<u>Score</u>	Feeling					
0	None					
1	Weak					
2	Moderately					
3	Strong					

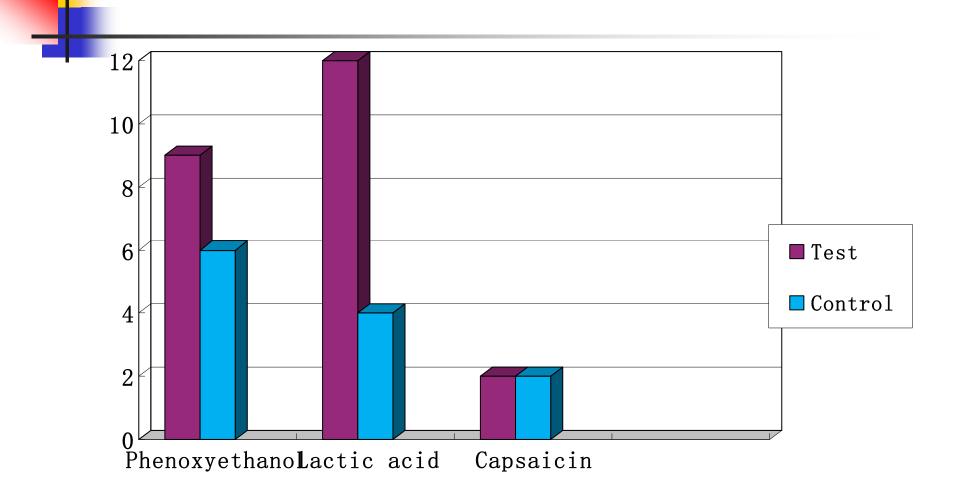
SPSS 11.5

-Total scores: Wilcoxon Signed Rank test

-Responsive subject numbers: Mc-Nemar test

-Mean starting time of subjects: T-test

Results Of Itching


Table 1Total Itching Score (N=30)

	Phenoxyethanol			Lactic acid			Capsaicin		
	2.5	5	cum	2.5	5	cum	2.5	5	cum
Test	5	4	9	7	5	12	1	1	2
Control	3	3	6	2	2	4	1	1	2
T-C	2	1	3	5	3	8	0	0	0

Statistics

- Phenoxyethanol: P2.5=0.157, P5=0.564, P2.5+5=0.257
 Lactic acid: P2.5=0.025, P5=0.180, P2.5+5=0.023
- Capsaicin:
 - P2.5=1, P5=1, P2.5+5=1

Total Itching Scores

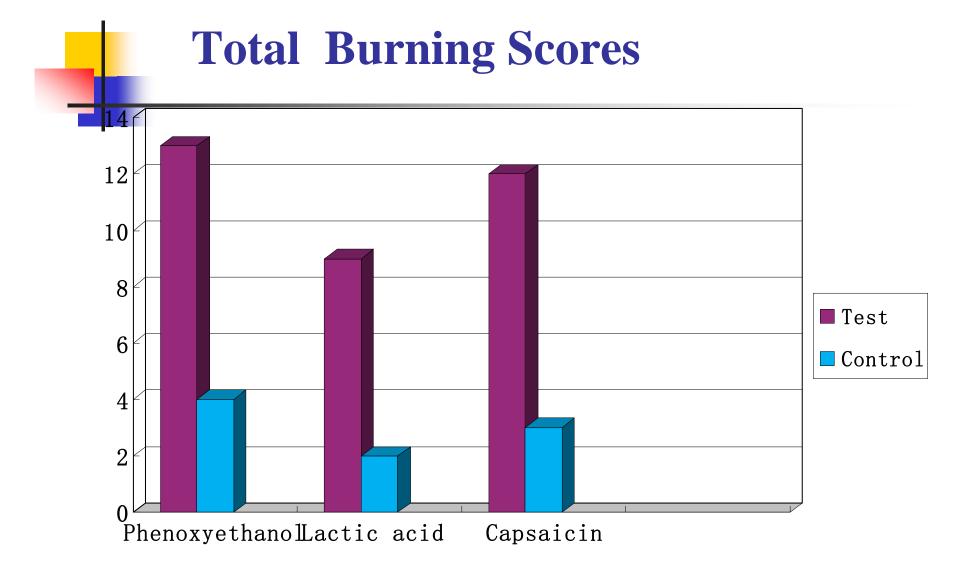
Table 2	2 Number of su	ıbjects feeli	ing itching
	Phenoxyethanol	Lactic acid	Capsaicin
Test	5	9	4
Control	3	3	4

There is a significant difference in Lactic acid test (P=0.031)

Table 3 Mean starting times of subjects (s)

	Phenoxyethanol	Lactic acid	Capsaicin
Test	135	105	146

Results Of Burning


Table 4 Total burning scores (N=30)

	Phenoxyethanol		La	Lactic acid			Capsaicin		
	2.5	5	cum	2.5	5	cum	2.5	5	cum
Test	6	7	13	5	4	9	7	5	12
Control	1	3	4	1	1	2	1	2	3
T-C	5	4	9	4	3	7	6	3	9

Statistics

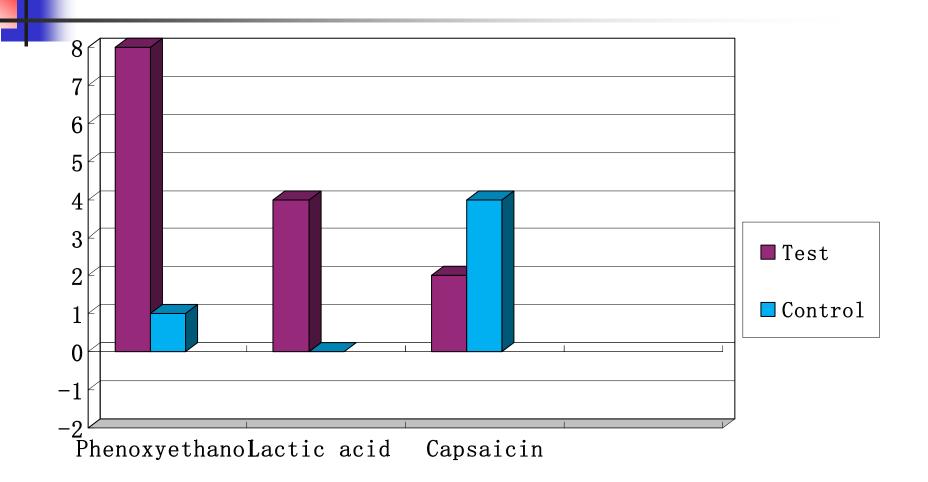
- Phenoxyethanol:
 P2.5=0.025, P5=0.206, P2.5+5=0.058
- Lactic acid:
 - **P2.5=0.046**, **P5=0.180**, **P2.5+5=0.053**
- Capsaicin:

P2.5=0.034, P5=0.180, P2.5+5=0.083

Table 5 Number of subjects feeling burning									
	Phenoxyethanol	Lactic acid	Capsaicin						
Test	6	8	9						
Control	4	4	2						

There is a significant difference in group capsaicin test(P=0.039)

r	Fable 6 Mean star	ting time of s	subjects
	Phenoxyethanol	Lactic acid	Capsaicin
Test	101.7	102.4	101

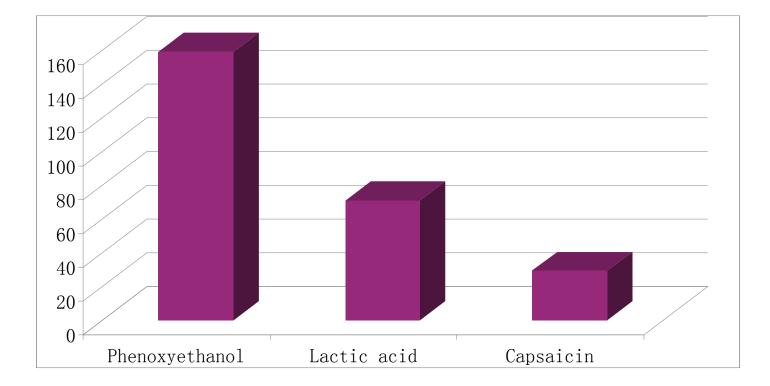


Results Of Stinging

Table 7 Total score of stinging (N=30)									
	Phen	oxye	thanol	Lactic acid			Capsaicin		
	2.5	5	cum	2.5	5	cum	2.5	5	cum
Test	3	5	8	3	1	4	1	1	2
Control	1	0	1	0	0	0	2	2	4
T-C	2	5	7	3	1	4	-1	-1	-2
P=0.066									

There is no significant difference between test sample to control of three groups

Total Stinging Scores


Tal	Table 8 Number of subjects feeling stinging								
	Phenoxyethanol	Lactic acid	Capsaicin						
Test	5	10	8						
Control	2	3	3						

There is no significant difference between test sample to control in three groups (Lactic acid :P=0.065 Capsaicin:P=0.227)

	Ta	able 9 Means sta	rting time of	f subjects
		Phenoxyethanol	Lactic acid	Capsaicin
-	Test	159	71	29.3

There is significant difference between group phenoxyethanol and capsaicin(P=0.007) P&L:P=0.060, L&C:P=0.141

Mean starting time

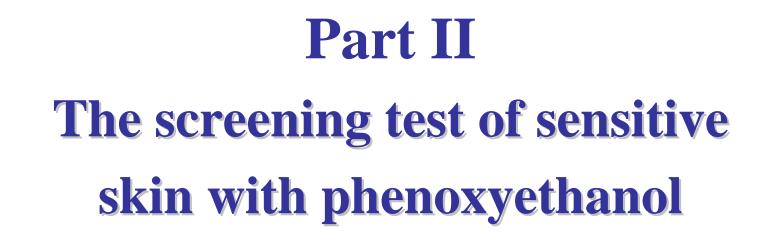
Table 10Total Stinging scoresduring 0-2.5 and 2.5-5 Min. (N=30)

	Phenoxyethanol		La	Lactic acid			Capsaicin		
	0- 2.5	5	Cu m	0- 2.5	5	Cu m	0- 2.5	5	Cu m
Test	3	5	8	9	2	11	10	1	11
Control	2	0	2	1	2	3	2	2	4
T-C	1	5	6	8	0	8	8	-1	7

Lactic acid: P2.5+5=0.035, Capsaicin: P2.5=0.046

Table 7 Total score of stinging (N=30)									
	Phen	oxye	thanol	Lactic acid			Capsaicin		
	2.5	5	cum	2.5	5	cum	2.5	5	cum
Test	3	5	8	3	1	4	1	1	2
Control	1	0	1	0	0	0	2	2	4
T-C	2	5	7	3	1	4	-1	-1	-2
P=0.066									

There is no significant difference between test sample to control of three groups


Finding conceals in details

Better way to evaluate stinging sensory of SS should record the feeling from the application of samples, not at 2.5 and 5 Minutes described in traditional method.

Conclusions

- Lactic acid test is superior than phenoxyethanol and capsaicin when evaluating itching by traditional method with 2.5 and 5 minutes' scores,
- Phenoxyethanol, Lactic acid and capsaicin tests are all sensitively to evaluate burning sensory of SS.

- Lactic acid and capsaicin tests are more sensitive to evaluate stinging with the method of recording 0-2.5 and 2.5-5 minutes' highest scores.
- Sensitive skin has a late response to
 Phenoxyethanol at around 2.5 minute,
 Therefore, phenoxyethanol test should be conducted in traditional way of evaluating SS.

Materials and Method

 1%phenoxyethanol – glycol (GS12AK010-F)
 Control: glycol (GS12AK010-E)

Materials and Method

- 239 Chinese female subjects
- 18-50 years old
- Inclusion & Exclusion criteria
- Constant temperature and humidity

Sensory parameters

- Itching
- Tingling
- Burning
- Stinging

Grading standard

<u>Score</u>	Feeling
0	None
1	Very Weak
2	Weak
3	Moderate
4	Strong
5	Very Strong

SPSS 11.5

-Total scores: Wilcoxon Signed Rank test

-Responsive subject numbers: Mc-Nemar test

-Mean starting time of subjects: T-test

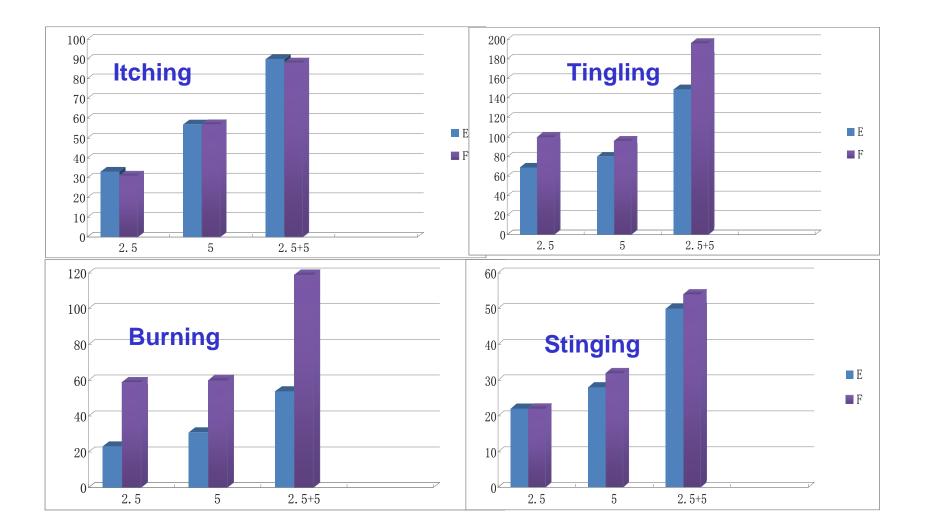

Results

Table 11: Total Sensory Scores (N=239)

		Ite	chir	ıg	Ti	ngli	ing	Bı	irn	ing	St	ingi	ng
		2.5	5	2.5 +5	2.5	5	2.5+ 5	2.5	5	2.5+ 5	2.5	5	2.5 +5
Test		31	57	88	100	96	196	59	60	119	22	32	54
Contro	bl	33	57	90	69	80	149	23	31	54	22	28	50

Statistics

Itching: $P_{2.5}=0.792$, $P_5=0.891$, $P_{2.5+5}=0.770$ Tingling: $P_{2.5}=0.022$, $P_5=0.144$, $P_{2.5+5}=0.030$ Burning: $P_{2.5}=0.001$, $P_5=0.010$, $P_{2.5+5}=0.001$ Stinging: $P_{2.5}=0.911$, $P_5=0.710$, $P_{2.5+5}=0.884$

Table 12 Numbers of Responding Subjects

	Itching	Tingling	Burning	Stinging
Test	46	98	57	28
Control	48	76	26	26

Tingling: P=0.004 Burning: P=0.000

Table 13: Mean Starting times of Subjects (S)

	Itching	Tingling	Burning	Stinging
Test	165.3	114.7	138.9	145.4
Control	171.2	124.5	186.4	162.0

Burning: P=0.044

Summary

- Burning and Tingling: Both the total scores and the responding subject numbers in Phenoxyethanol group are significantly higher than Glycol control.
- Itching : Both Phenoxyethanol and Glycol groups give similar results in inducing itching.

The inhibiting effect of TRPV-1 antagonist on Phenoxyethanol in inducing skin irritancy

TRPV1

Transient receptor potential channel, vanilloid subfamily member 1

<u>瞬时受体电位香草素亚型</u> I

TRPV1 E600 (H") **Kopp** T704 (PKA, CAMK) T370 (PKA, PKC, CAMK) (PKA, PKC) AMA \$800 (PKC) CaM >PIP, 10000 or and the second -5116 (PKC)

Materials and Method

 1% Phenoxyethanol +TRPV1 antagonist (trans-tert-Butylcyclohexanol) in Glycol (GS12AK010-H)
 1% Phenoxyethanol in Glycol

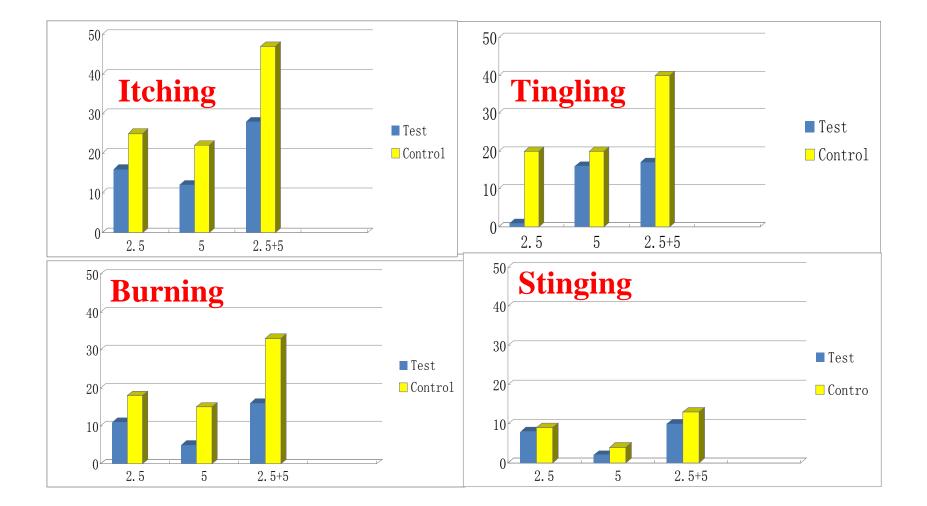
 1% Phenoxyethanol in Glycol (GS12AK010-G) (control)

Materials and Method

- 60 Chinese female subjects
- All responsive to Phenoxyethanol in Part II
- **18-50 years old**
- Inclusion & Exclusion criteria
- Constant temperature and humidity

Statistics

Results


Table 14 Total scores of two groups (N=60)

	Itching		Tingling		Burning		Stinging					
	2.5	5	2.5 +5	2.5	5	2.5+ 5	2.5	5	2.5 +5	2.5	5	2.5 +5
Test	1	16	17	16	12	28	11	5	16	8	2	10
Control	20	20	40	25	22	47	18	15	33	9	4	13

Statistics

Itching: $P_{2.5}=0.004$, $P_5=0.386$, $P_{2.5+5}=0.040$ Tingling: $P_{2.5}=0.098$, $P_5=0.054$, $P_{2.5+5}=0.041$ Burning: $P_{2.5}=0.107$, $P_5=0.034$, $P_{2.5+5}=0.023$ Stinging: $P_{2.5}=0.887$, $P_5=0.480$, $P_{2.5+5}=0.876$

Comparation of different sensory scores in Two groups

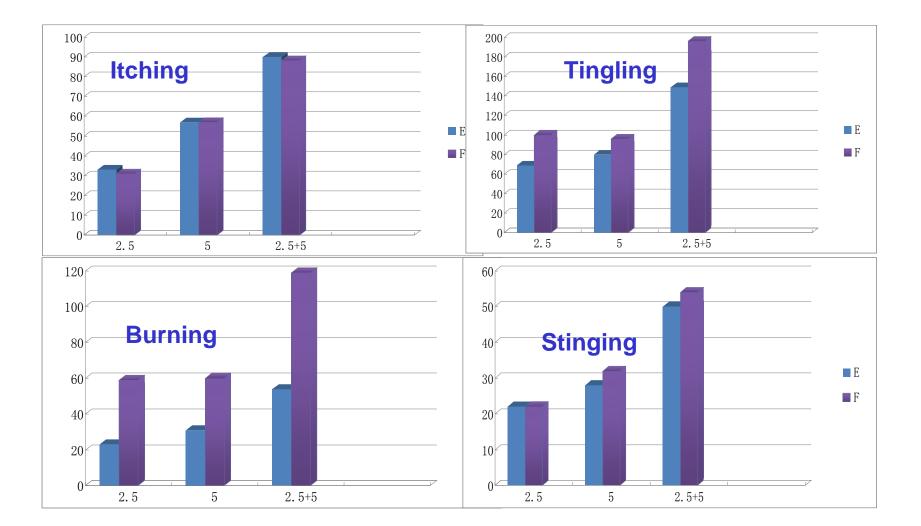
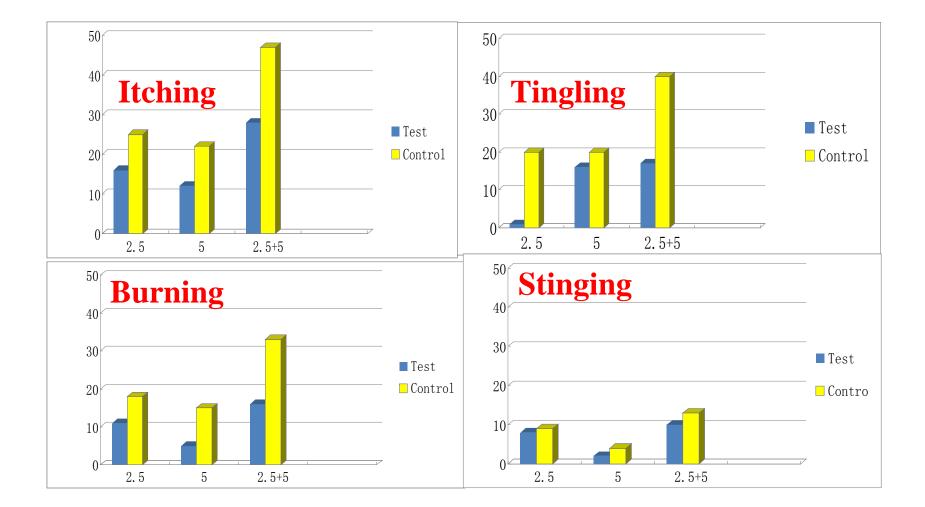


Table 15 Numbers of responding subjects								
	Itching	Tingling	Burning	Stinging				
Test	13	23	10	6				
Control	13	20	13	7				


Table 16Mean starting times of subjects (S)

	Itching	Tingling	Burning	Stinging
Test	214.5	117.1	67.9	127.7
Control	136.4	113.5	98.3	131.0

PART II: Phenoxyethanol and Itching sensory

PART III: Phenoxyethanol inducing Itching

Phenoxyethanol in inducing itching

PART II: Glycol
PART III: Trans-tert-utylcyclohexanol

Glycol as a Matrix in Part II may induce itching as much as phenoxyethanol, while trans-tertutylcyclohexanol may be better in study of phenoxyethanol.

Conclusions

TRPV1 antagonist can inhibit the sensory stimulation induced by phenoxyethanol in sensitive skin

THANKS