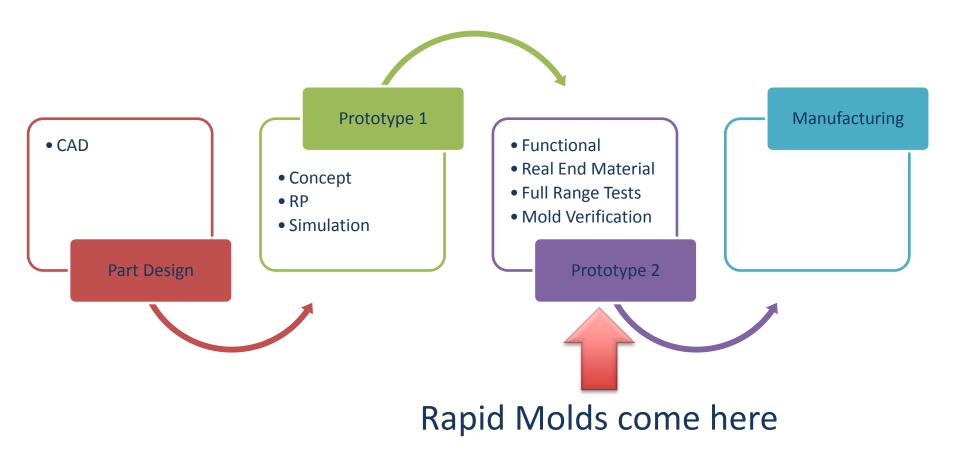


1001 7

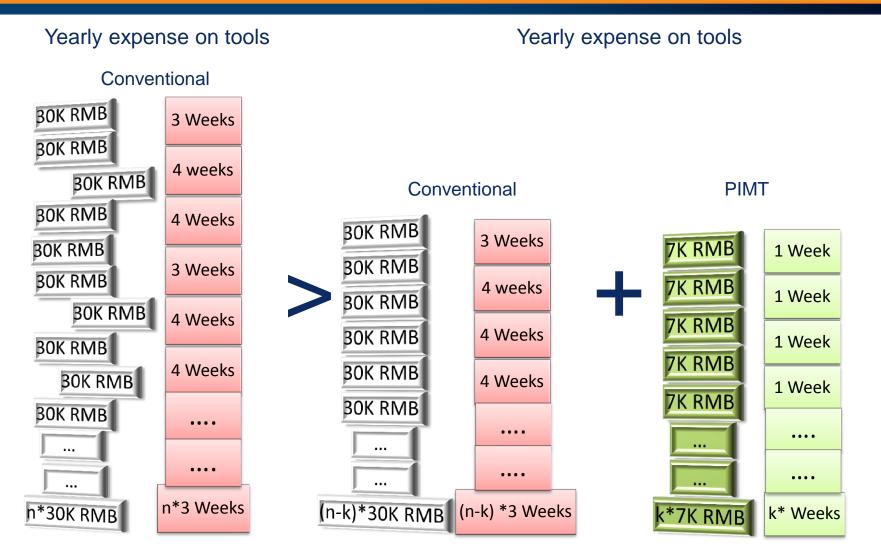
Shanghai Dec2014 Alan Yu

3356


Content

- 3DPIM what is it good for?
- 3DPIM Best fit
- 3DPIM Growth engine Wins
- Available resources for success
- Injected Parts examples
- Technical Tips and Tricks for success
- Q&A

PIMT – What is it good for?



Watch this video to see an example: video

PIMT – What is it good for?

Some projects can be moved to 3DPIM use – saving both time and money in the bottom line

Thermoplastics with:

- Molding temperatures < 300 °C (570 °F) •
- Good flow ability •
- Candidates: PE, PP, PS, ABS, TPE, PA, POM, PC-ABS ٠
- Glass filled resins ٠

Low quantities (5 to 100 Parts)

Mid-sized parts (< 165 ccm, [10 cu. in.])

Machine type:

- Bench Plastic Injection Molding Machines ٠
- 50- to 100-ton molding machines ٠

PolyJet inserts in a mold base

3DPIM – Best fit

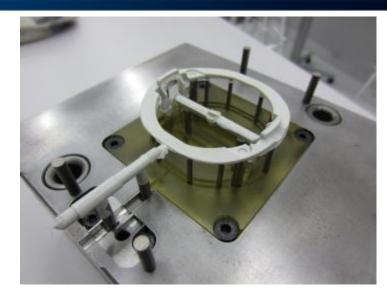
- Printer: Eden260V
- Industry: CG Manufacturing ladders
- Need for IM: Safety tests must be done with end product material (Usually PP)

- Industry: CG a leading manufacturer in the plastics processing industry
- Need for IM:
 - Create prototypes from end product material
 - Same design testing with different plastics

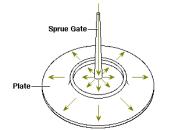
- Printer: Connex500
- Industry: Medical
- Need for IM: Speeding time to market in medical device product development for their customers
- Yahoo News!
- Printer: Connex260
- Industry: CE certified manufacturer of high quality, build-to-print cables and harnesses for commercial and military applications.
- Need for IM:
 - Create prototypes from end product material
 - Same design testing with different plastics

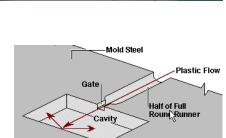
- Printer: Connex260
- Industry: Plastic
- Need for IM: Low volume production
- Diversified Plastics.mp4
- Printer: Connex500
- Industry: CG (Multi-Billion International Company)
- Need for IM:
 - Create prototypes from end product material
 - Functional tests- living hinges

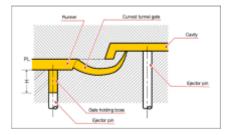
- Printer: Connex500 (2nd Printer purchased for IM only)
- Industry: Pumps Manufacturer
- Country: UK
- Need for IM: Low volume production and services
- Video : Whale



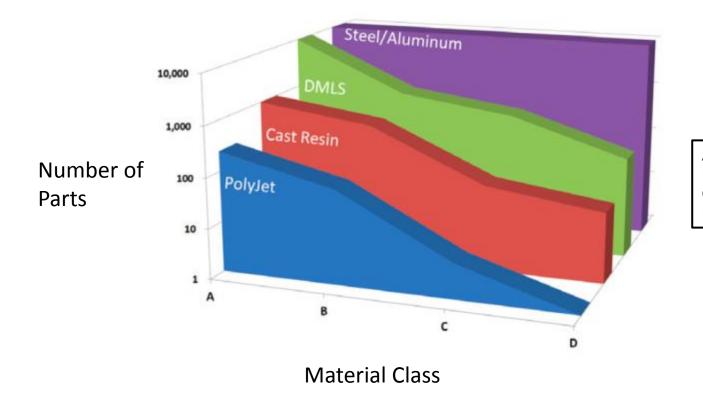
- Printer: Connex500 , O30Pro
- Industry: Consumer Electronics
- Country: Germany
- Need for IM: Low volume production and services






Available resources for success

- Available resources on line:
 - <u>Case Study Budapest University</u>
 - <u>Whitepaper</u>
 - <u>Application notes and expert advice</u>
- Technical support
 - AE out of SSYS Shanghai office
 - "Tool Trial Service" from Stratasys Chaina



PIMT – Flexibility in Prototype Manufacturing

Stratasys

What can we offer? (Remember the plastic world...^(C))

A= PE, PP, PS, ABS, TPE's B= PP+G, PA, POM, PC+ABS C= PA+G, PC, POM+G D= PC+G, PPO, PPS

Industry	Consumer goods	
Part description	Screw Cap, Gas filter	
Material injected	Acetal, PP+GF, EPDM	
Special features Threads, 3 part mold		

and a start

Acetal

PP+20% GF

EPDM

PA 66 + 20% GF

Part 1 – Injection parameters

Material	PP+GF	PA+GF	POM
Nozzle Temp [C]	195	285	195
Inj. Pressure [bar]	200	200	200
Hold Pressure [bar]	200-400	200-400	200-400
cycle time [s]	110	110	110
Clamping force [kN]	400	400	400

Industry	Consumer goods	
Part description	Ice cream spoons	
Material injected	PP	
Special features	6 cavity mold	
comments	Injected in different colors	


	Cost (US\$)	Turnaround (days)	comments
P20 Steel	3200	30	
Aluminum	1400	30	
ABS-like	785	7 hr. (1 day)	Connex 260 Consumption: 400gr RGD535 480gr RGD515 100gr support

Time saving: 3000% Cost savings:

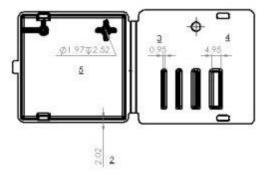
- 44% over aluminum
- 75% over steel

Industry	Automotive	
Part description	Steering wheel connector	
Material injected	Wax, HDPE	
Special features	Highly complex. Thin walls	
comments	10 parts molded, long cycle time	

Material	HDPE
Nozzle Temp [C]	185
Inj. Pressure [bar]	600
Hold Pressure [bar]	300
cycle time [s]	360
Clamping force [kN]	300

Part description	Test part		
Material injected	PP, ABS		
Special features	Ribs, bosses, shut offs		
comments	Deep draw in the ejection direction		

Material	ABS
Nozzle Temp [C]	210
Inj. Pressure [bar]	450
Hold Pressure [bar]	150
Holding time [s]	5
Cooling time [s]	140
Comments	Vortex air separator blow time for 60 seconds after ejection



	1	
Part description	Test part	
Material injected	PP	
Special features	Living hinge, bosses, press fit	
comments	• 100 parts out of 2 tools	
	Low pressure developed	
	Tools did not fail	
Material	DD	

Material	PP
Nozzle Temp [C]	220
Inj. Pressure [bar]	600
Hold Pressure [bar]	200
Holding time [s]	8
cycle time [s]	180
Comments	Cooling with air pressure

_	Cost (US\$)	Turnaround (days)	comments
P20 Steel	3400	18	IL estimation
Aluminum	1670	7	IL estimation
ABS-like	960	22 Hr. (1 day)	Connex 500 Consumption: 810gr RGD535 1408gr RGD515 150gr support

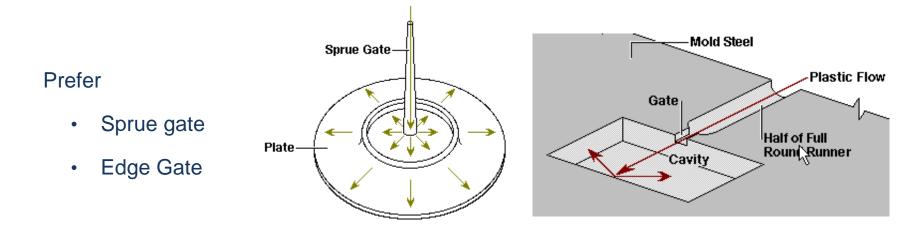
Time saving: 700-1800% Cost savings:

- 43% over aluminum
- 72% over steel

• Industry	Automotive
Part description	Propeller
Material injected	• POM (Acetal)
Special features	• 3 part tool
 Barrel temp: Pinj (limit) Phold Holding time Clamp force Vinj Switch over position Shot size Cooling time 	 190-210C 300 bar 100-50 bar (linear decrease) 8 sec 150kN 10 cc/cm 25cc 65 cc 30 sec

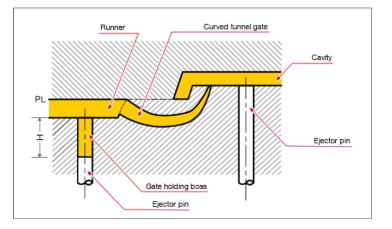
Industry	Automotive seals
Part description	TPE seals
Material injected	TPE
Special features	3 part tool
comments	From customer: "Compared to silicon molding, 50% in time and cost are saved as well as <u>real</u> material prototypes made"

• 20 parts molded



• 5 parts molded

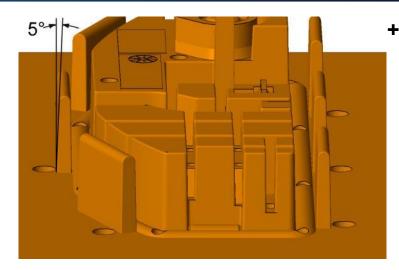
Mold Design – Gate Design



Increase gate size over traditional to minimize stress

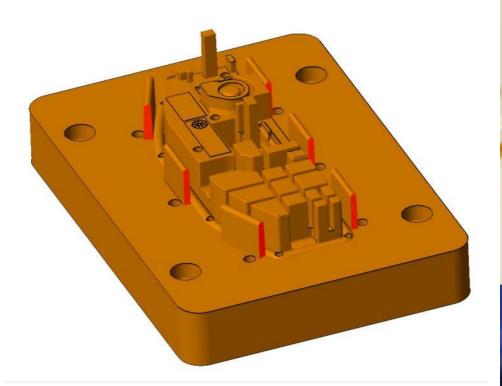
Not recommended

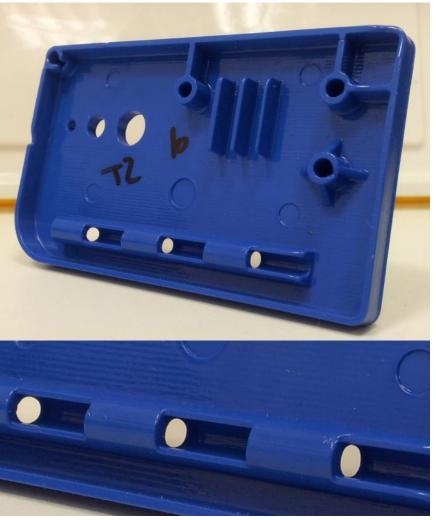
• Tunnel, Cashew, Banana and point gate



Mold Design – Draft and Shutoff

Increase draft angle (5°)


- To facilitate ejection
- To reduce stress
- Inset shut-off faces
- Due to printer tolerance
- 0.05 to 0.1 mm
- For > 6 mm faces parallel to mold pull

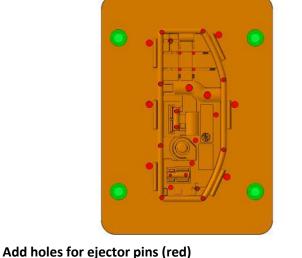


Increase draft angle – 5° recommended

Mold Design – Draft and Shutoff

Inset shut-of surfaces (red)

Shut-offs on hinge required no inset

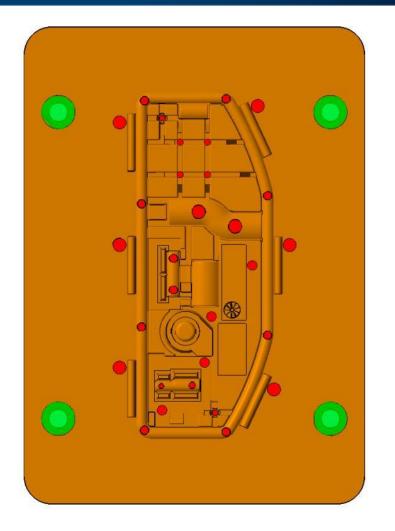

Cooling system is not recommended

<u>_</u>

Mold Design

Mold components

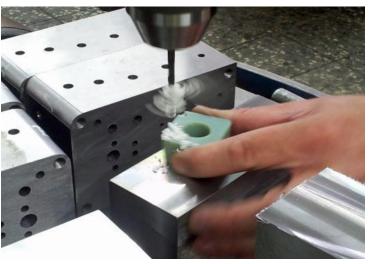
- Ejection system
 - Add round holes for ejector pins
 - Undersize by 0.2 0.3 mm
 - Ream to perfect fit
- Cooling system
 - If used, locate 8 10 mm below cavity surface



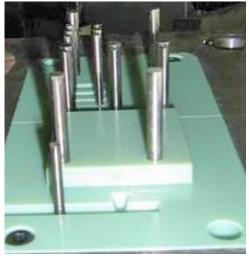
Mold Design

Add holes for ejector pins (red). Bolt holes also shown (green)

Mold Fitting and Finishing



Fit ejection system

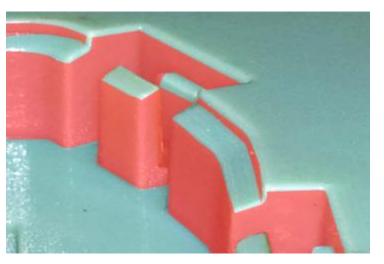

- Ream holes
- Confirm snug but smooth movement

Mold base option

- Face mill stock from side walls
- Seat inserts in mold base pockets
- Confirm 0.2 mm (0.008 in.) beyond mold base
- Mill or add shims to adjust

Ream holes for core and ejector pins

Fit ejection system


Mold Fitting and Finishing

Remove support material

Smooth surfaces

- For extraction (optional)
 - Light sanding (180/220 grit)
 - · Surfaces that rise in pull direction
- For appearance (optional)
 - All surfaces
 - 180/220 grit followed by 320/400 grit

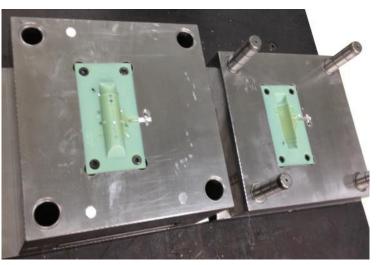
Sand vertical surfaces (red) for extraction

Mounting

Mounting options:

Mold base (recommended)

- Largest investment
- Increased part complexity
- Improved part quality


Steel plate with ejection

- Mid-range investment
- Increased part complexity

Steel plate without ejection

- Smallest investment
- Fastest

Mold base (recommended)

Plate mount with ejection (left)

Process Development


Goal: Conservative settings to maximize tool life

Process

- Start with very low pressures and temperatures
- Test runs

Inspect results

Adjust as needed

Test shots to dial in parameters

Process Development #1

Initial settings:

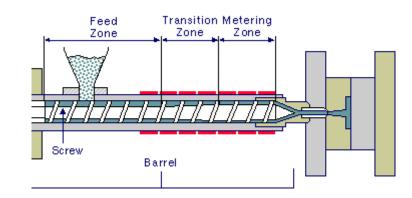
Injection molding time limit

20 seconds

Pack & hold phase

0 kPa (0 psi) and 0 seconds

Shot size


75% of standard volume

• Barrel temperatures:

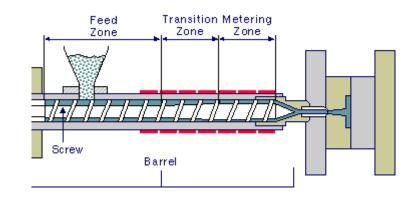
Low end of resin recommendation

Conservative settings for first shot

Use lowest recommended settings for barrel

temperature and screw speed

Process Development #2



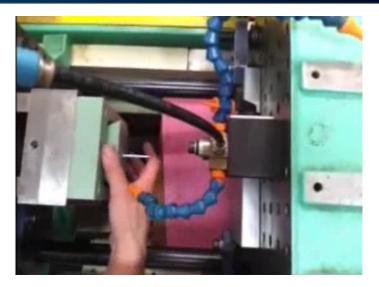
Initial settings

- Injection speed:
 - Low end of resin recommendation
 - 10% to 20% of the machine's maximum screw speed
- Cooling cycle:
 - Small, thin parts: 40 seconds
 - Larger parts or thicker features: 90 seconds

Conservative settings for first shot

Use lowest recommended settings for barrel temperature and screw speed

IM: Molding Adjustments



Trial shots:

- Increase shot size- Target 90% of volume
- Adjust packing pressure-30–50% of injection pressure
- Increase hold time

If sink marks are present:

- Adjust barrel temperature
- Adjust injection speed
- Do not over cool part
- Will cause part to shrink and grab tool

Process Development

Mold temperature:

- Will rise with continuous operation (undesirable)
- Allow to cool between shots -Target: 50 °C

Compressed air cools mold to 50 °C (120 °F)

Either:

- Use extended dwell between cycles
- Accelerate with compressed air during dwell

Thank you!

•For more information please contact me at - Alan.Yu@stratasys.com