

发动机周边非金属材料应用及轻量化解决方案

12/03/2015

赵涌 13705533499 zhaoyong@mychery.com

目录

- 一、发动机周边非金属零件介绍
- 二、发动机周边非金属零件选材
- 三、发动机周边非金属件典型用材介绍
- 四、发动机周边非金属材料趋势
- 五、发动机周边非金属材料轻量化方案

一、发动机周边非金属零件介绍 «» CHERY

1.1 发动机本体主要非金属件

张紧轮

正时罩盖

气门室罩盖

气门室罩盖垫圈

装饰罩

节温器壳体

传感器

支架

传动皮带

点火线圈

油底壳

进气歧管

一、发动机周边非金属零件介绍 CHERY

1.2 发动机周边主要非金属件

一、发动机周边非金属零件介绍 CHERY

2.1 发动机周边温度场

发动机周边零部件最高温度

范围	测定部位	测定状况	最高温度/℃
	进气管表面	行驶中	142
	启动马达表面	行驶中	117
发	发动机表面	行驶中	105
动	化油器表面	行驶中	93
机	发动机上空	刚停车	90 ~ 104
罩	点火线圈表面	刚停车	83.5
100	分电器表面	刚停车	80
内	燃油泵表面	刚停车	65
零	消声器表面	刚停车	185
部	排气管附近	行驶中	120
件	发电机表面	行驶中	100 ~ 104
	机油滤清器附近	刚停车	76 ~ 79
	空气滤清器附近	刚停车	80 ~ 85

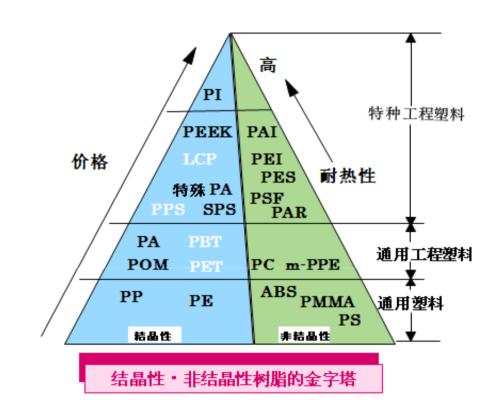
▶ 零部件选用的材料须满足长时间热老化要求

一、发动机周边非金属零件介绍 CHERY

2.2 发动机周边介质

发动机四周接触介质情况

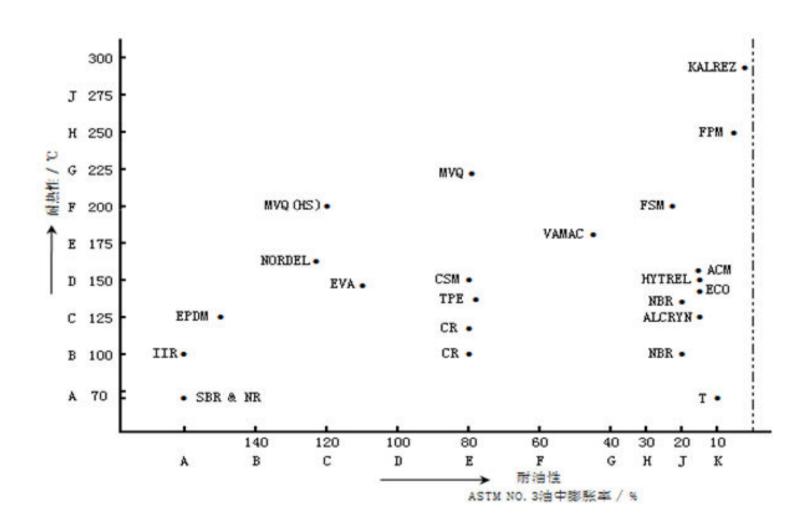
介质	用途	温度范围/℃	所属系统
汽油	燃料	− 40 ~ 50	燃油
柴油	燃料	− 40 ~ 50	燃油
机油	润滑	80 ~ 100	发动机
齿轮油	润滑	80	变速箱
硅油	热传导	80	风扇离合器
乙二醇	热传导	105	冷却
水	冷却	105	冷却
制冷剂	制冷	- 25	空调
MTBE	抗爆	− 40 ~ 50	燃油
甲醇	燃料	$-40 \sim 50$	燃油
表面活性剂	可玻璃清洗	$-20 \sim 50$	车身玻璃
化学触媒	氧化	− 40 ~ 400	排气净化


▶ 零部件选用的材料须满足耐介质要求

二、发动机周边非金属零件选材 🦇 CHERY

2.3 塑料材料的性能分级

- 半结晶塑料具有耐化性好、 耐温性能好、耐磨性好等 优点,但其表面装饰性差、 收缩率大、尺寸稳定性差, 使用时多需要改性:
- 无定形塑料则恰恰相反, 具有表面装饰性好、收缩 率小、尺寸稳定性好、刚 性好等优点, 但不耐磨、 耐化学性差、耐温性差, 使用时基本不需进行改性。



长期使用温度	材料	
100℃以下	PP、PE、ABS、PMMA	
100℃~120℃	PP+M、PP+GF、POM、PA66、PA6	
120℃~150℃	PA66+GF、PA6+GF	
150℃~200℃	PPA、PPO、PES、PAR、PSF	
200℃以上	PI、PTFE、PPS、PEEK	

发动机周边非金属零件选材 🔷 CHERY

2.4 橡胶材料的性能分级

发动机周边非金属零件选材 STERRY

2.4 橡胶材料的性能分级

橡胶	使用温度范围	热塑性弹性体	使用温度范围
EPDM	-50 °C ~150 °C	TPO	-40 °C ~100 °C
NR	-75 ℃ ~90℃	TPV	-40°C ~140 °C
CR	-60 °C ~110 °C	TPEE	-40°C ~150 °C
NBR	-40 °C ~120 °C	TPU	-40°C ~120 °C
SBR	-60 °C ~100 °C	TPS	-40°C ~90 °C
ACM/AEM	-30 ℃ ~180 ℃		
VMQ	-60°C ~ 200°C		
FKM	-30 ℃ ~250 ℃		
CO/ECO	-40 °C ~150 °C		
HNBR	-40 °C ~150 °C		
AU/EU	-40 °C ~110 °C		
CSM	-40 °C ~130 °C		

耐热性能:FKM≥VMQ≥ACM/AEM≥HNBR、ECO≥EPDM≥CSM≥CR、NBR≥NR,SBR

耐热性能: TPEE≥TPV ≥TPU ≥TPO ≥TPS

二、发动机周边非金属零件选材 CHERY

2.5 发动机非金属零件选材

系统	零部件 用材	
	气门室罩盖	PA66+GF、PA66+(GF+M)、PA6+GF
 发动机本体	进气歧管	PA6+GF
次约7/10年中	油底壳	PA66+GF
	固定支架	PA66+GF
	引气管	PP、PE、PP+M、PP+GF
	空滤壳体	PP+M、PP+GF、PA+GF
出层五 6	谐振腔	PP+GF、PA+GF
进气系统 上	中冷管	AEM、FKM/VMQ、PA66-GF
	进气软管	EPDM, TPV, TPC
	节流阀体	PA66+GF
	散热器水室	PA66+GF、PA66/612+GF
	水管	EPDM
冷却系统	冷却风扇	PA+GF
	风扇护框	PP+GF、PA+GF
	膨胀箱	PP、PP+GF

二、发动机周边非金属零件选材 CHERY

2.5 发动机非金属零件选材

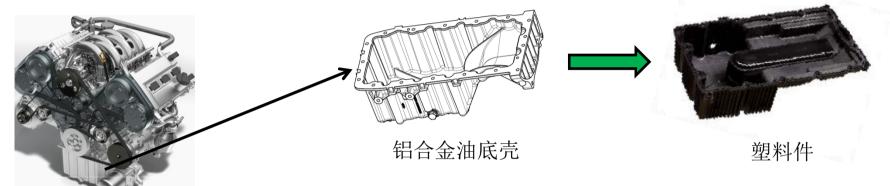
系统	零部件	用材	
	加油口盖、油标尺	PA66、PBT+GF、PET+GF	
油路阀门系统	同步皮带轮罩	PP+GF、PA+GF	
個時國日永知	皮带张紧轮	PA66+GF	
	链导槽	PA66+GF	
发动机装饰罩	装饰罩本体	PA6+(GF+M), PA6+M	
	点火线圈	PBT+GF、PA+GF、PPS+GF	
电器系统	电器盒盖	PPS+GF、PBT+GF	
	蓄电池托盘	PP+LGF	
	碳罐	PP+GF、PA+GF	
	燃油管	PA11、PA12	
燃油系统	燃油喷射器	PA66+GF	
	油泵	POM	
	燃油箱	HDPE/LLDPE/EVOH	

- 3.1 发动机本体非金属件
- 气门室罩盖

零件要求:

- ▶ 150℃长时间高温耐油性能
- 良好的耐疲劳性能
- 表面密封性
- 长时间负载下力学性能保持率
- 高冲击性能、导热性能

典型用材: PA66-GF30、 PA66-GF35

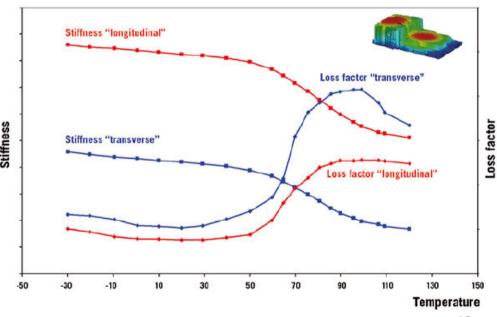


3.1 发动机本体非金属件

油底壳

油底壳塑料化的优势:

▶减重: 减重30~50%;


▶成本:通过部件集成控制成本;

▶工艺: 注塑生产周期短、无需后处理: *****

▶性能要求: 高强度, 耐热及耐机油;

阻尼性能、噪声控制:

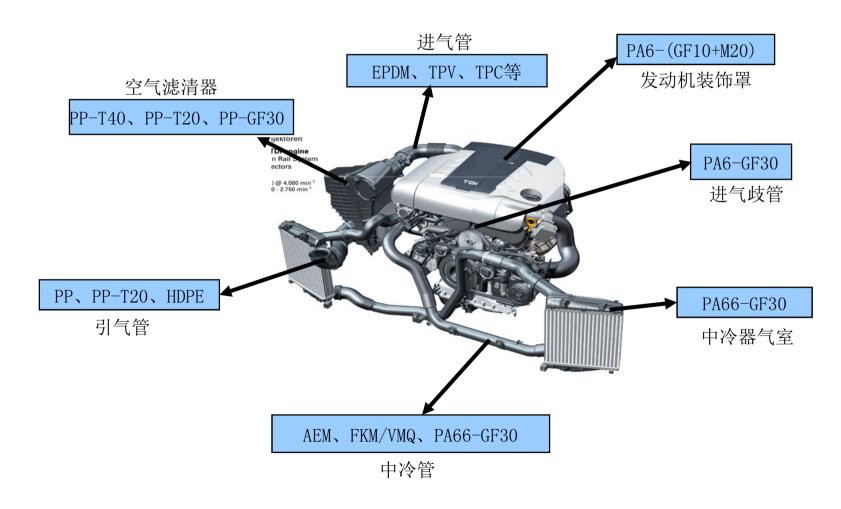
飞石冲击性能:

- 3.1 发动机本体非金属件
- 发动机装饰罩

零件要求:

- ▶ 美观,降低噪音
- ▶ 高流动,低翘曲,尺寸稳定性高
- ▶ 适当的耐热性能
- ▶ 良好的表面光泽度
- 低成本

典型用材: PA6-(GF10+M20)



3.2 进气系统非金属件

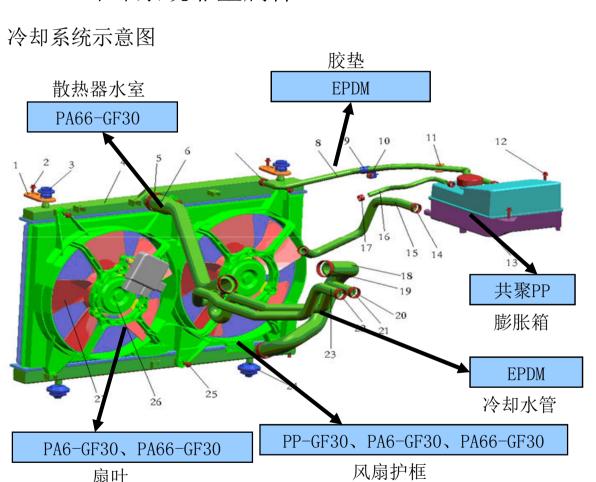
进气系统示意图

- 3.2 进气系统非金属件
 - 进气歧管

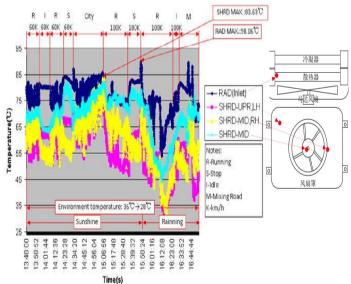
零件要求:

- 良好的刚性和韧性
- ▶ 温度-40-135 ℃
- ➤ 长期耐温130℃*2000h以上
- ▶ 短期耐温170℃以上
- ▶ 爆破压力 (≥800Kpa)
- 低蠕变
- 良好的焊接性能
- ▶ 表面光洁度高
- 耐发动机周围各种高温液体

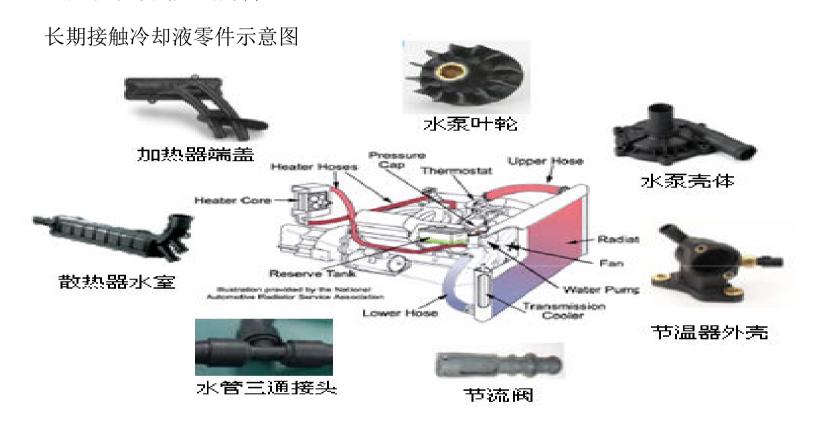
塑料进气歧管


塑料化的优势:

- 1. 减重50%, 容易成型;
- 2. 空气流动阻力小提高进气效率;
- 13. 导热低,改善热启动性能。


典型用材: PA6-GF30

3.3 冷却系统非金属件

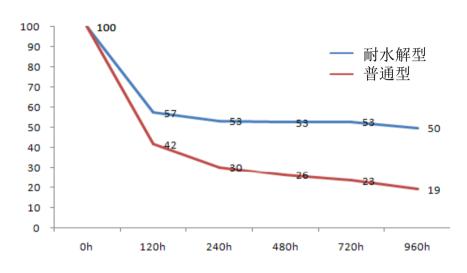

实验项目	实验方法	判断标准	-	
			PP-GF30	PA6-GF30
轴向加载 实验	开始以32.5Kg的负载施加于风扇罩后端盖,之后每隔15s施加2.5Kg的力,直到失效。	在施加 45Kg 负载 情况下,风扇罩 功能性损坏	1137N	751N
径向加载 实验	在马达正上方风扇罩上 施加45.4±0.4Kg的负载1 分钟	实验前后无干涉 发生,并测量其 变形量。	无干涉 1.62mm	无干涉 2.08mm
	判断结果	OK	OK	

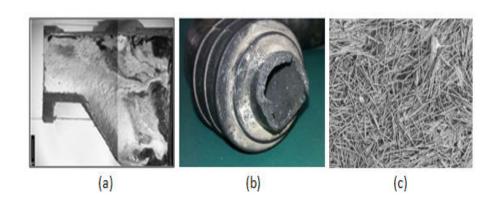
	744					
左 垂山	266 2 - 2 - 2 - 2 - 1	에 무리 무기다	温度 (℃)			
车型	测试方法	测试路况	环境温度	散热器入口温度	风扇罩	
	风洞	60km/h 熄火	40	88	75],.
	实车路试	城市路况	35	84. 5	83. 6	7-

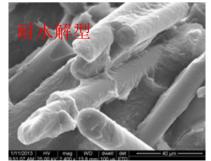
3.3 冷却系统非金属件

典型用材: PA66-GF30、PA66-GF35(耐水解牌号)

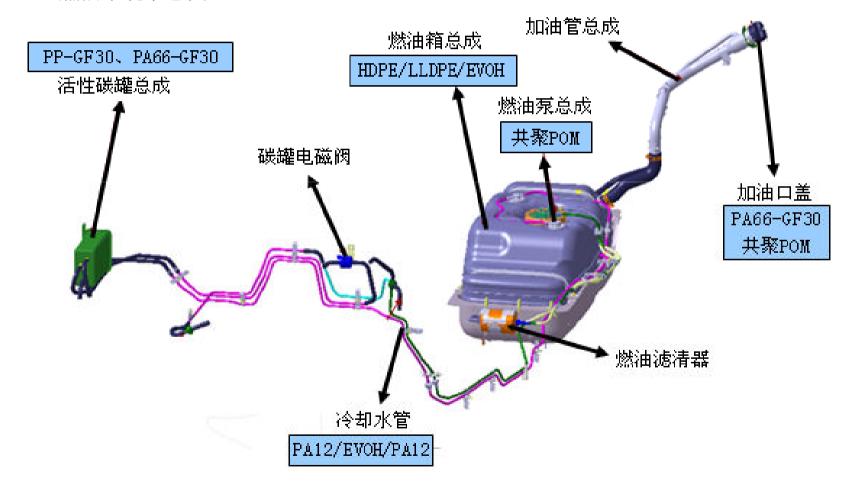
□ 增压动力系统普及,工况苛刻的主要部件(水泵叶轮,水泵壳体、中冷器端盖), 未来趋势高性能玻纤增强PPA或者PPS材料将普及。


三、发动机非金属件典型用材介绍 SPERY


3.3 冷却系统非金属件


- 散热器水室 零件要求:
 - 极好的刚性和强度
 - ▶ 低翘曲,尺寸稳定性高
 - 长期耐热性能
 - 耐水解

120℃耐冷却液拉伸强度保持率

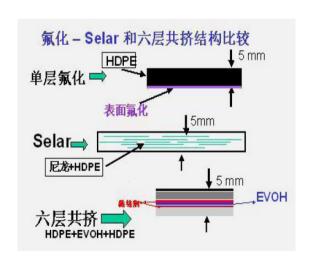


耐冷却液后拉伸断面电镜照片

3.4 燃油系统非金属件

燃油系统示意图

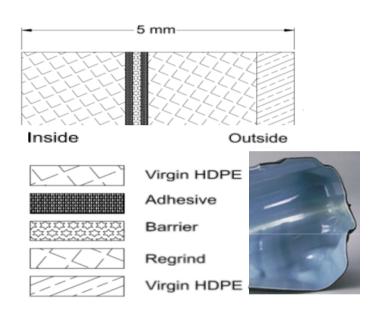




3.4 燃油系统非金属件

塑料燃油箱生产工艺

国内外比较流行的有三种油箱加工工艺: 氟化技术、Selar技术、多层共挤技术。多层 共挤生产的燃油箱具有最好的燃油渗透性能。



3.4 燃油系统非金属件

奇瑞公司塑料燃油箱生产工艺

采用多层结构,即HDPE层、粘结层、阻隔层 (EVOH)、粘结层、HDPE层共挤出成型,其中阻隔层 保证燃油渗透性能,HDPE作为内层和外层,起成型、 强度、骨架等作用,同时保证满足耐热耐老化性能。

结构	材料	厚度或含量
内层	HDPE	>25%
粘结层	LLDPE	>1%
阻隔层	ЕVОН	>0.03mm汽油 >0.01mm柴油
粘结层	LLDPE	>1%
回料层	HDPE	<50%
外层	HDPE	>10%

3.4 燃油系统非金属件

塑料燃油箱技术要求

检测项目	要求指标		
坠落试验	箱体内注满冷冻液,在-40 C环境中和常温放置12 h,由10 m高度自由落下,箱体不破裂,不泄漏		
摆锤冲击	箱体内注满冷冻液,在-35 C环境中放置12 h,用1 t 重的摆锤,冲击能量为4 kJ,冲击后箱体不出现裂纹,不泄漏		
尖锤冲击	箱体内注满冷冻液,在-40 C环境中放置12h,用14.7N尖锤,冲击能量为30J,冲击后箱体不出现裂纹,不泄漏		
燃烧试验	箱体内注满 50 %燃油,置于直接、间接火焰上 120 s,箱体不破裂和爆炸		
耐热性试验 在 95 C的环境中加热 1 h,无泄漏变形 耐冷热交变循环试验 按 80 C(16 h) \rightarrow 室温(1 h) \rightarrow - 40 C(6 h) \rightarrow 室温(1 h) 为一个循环,共 14 个循环后无泄漏变			
		耐老化性试验	大气中暴露一年半后,性能无显著下降
耐压试验	箱体内注满液体,在0.03 MPa 的压力,53 C下,加压5 h,箱体不破裂、不泄漏		
耐振动性试验	常温、振动加速度 28.4 m/ s^2 、振动频率 33.3 Hz ,振动方向和时间:上下(4 h),左右(2 h),前后(2 h),不破裂、不泄漏		
气密性试验	常温,充以0.03 MPa(表压)的气压,持续30 s不得有任何渗漏现象产生		
14 1	箱体内注入50%含芳香烃的燃油,在+40°C温度环境中8周,按西欧、日本标准平均泄漏<20g/d;		
渗透试验	北美、美国标准泄漏 < 2 g/d		

关于燃油箱的技术要求,各个主机厂都有自己的企标标准,在检测项目和指标要求上会有不同。

3.4 燃油系统非金属件

奇瑞公司塑料燃油箱技术要求

- ▶性能要求符合奇瑞企业标准Q/SQR. 04. 213-2009要求;
- ▶强检性能符合GB 18296-2001《汽车燃油箱安全性能要求和试验方法》。

跌落试验

燃油渗透

火烧试验

低温冲击

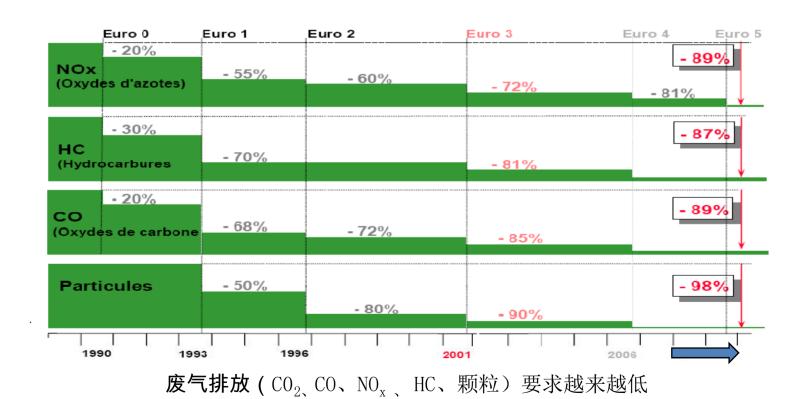
耐压试验

道路试验

4.1 回收利用和禁用物质法规的影响

欧盟ELV(报废车辆指令)要求

- (1) **2003**年**7**月**1**日后,投放市场的车辆中所有部件和材料中不得含有**Hg**、**Cd**、**Pb**、**Cr(VI)**(豁免条例中规定的应用除外)。
- (2)要求汽车生产者与材料及部件供应商共同使用材料/配件代码标准,以利于部件或材料在回收利用中的分类与确定
- (3)回收利用率时间要求


- ▶中国计划2013年7月1日执行汽车禁用物质要求(强标),车用材料必须满足禁用物质要求;
- ▶为满足回收利用要求,传统橡胶将更多地被热塑性弹性体材料取代;
- ▶环保、可回收、生物材料的使用会越来越多。

4.2 废气排放法规的影响

轻量化和小排量增压发动机技术是降低油耗,减少排放,提供燃油经济性最有效的手段。

通过以塑代钢可以实现整车的轻量化。

26

排放法规

结论/Conclusion

(2) 蒸发排放(对燃油管、燃油软管、油罐的渗透性)

燃油排放的要求越来越严格,未来的趋势零排放。

世界各国的排放法规越来越严格!

```
    EPA

    2005~: Tier 2, 0.95g/day.vehicle
    2009~: Small engine, 1.5g/m2.day, test fuel E10.
    2017~: Tier 3, 0.3g/day.vehicle

    CARB

    2004~; LEVII, 0.5g/day.vehicle
    2005~: PZEV, 0.35g/day.vehicle, for fuel system <0.054g/day.test
    2014~; LEVIII, Option 1: 0.35g/day.vehicle, for fuel system <0.054g/day.test
                   Option 2: 0.3g/day.vehicle, test fuel E10 for Opteion 1&2

    Europe

    2009~: Euro V, 2g/day.vehicle, Test fule E5
    2014~: Euro VI, 2g/day.vehicle, Test fule E5
· 中国/ China
    2007~: GB III,2g/day.vehicle
    2010~: GB IV,2g/day.vehicle
    2016~: GB V, 2g/day.vehicle
```

四、发动机周边非金属材料发展趋势 《 CHERY

生物燃油的使用

四、发动机周边非金属材料发展趋势 « CHERY

生物燃油的对燃油系统的要求

生物燃油的使用对燃油渗透性能提出了更高的要求, E10(含10%酒精)酒精燃油逐渐 成为法规试样燃油,对燃油系统的阻隔性能提出了更高的要求

材料性能受到酒精和甲醇的影响:

> 渗透

分子体积小、可溶性强, 具有更强的渗透性

- 膨胀
- 聚合物基体扩散,同时发生增塑作用
- 增塑剂析出 增塑剂析出后,材料会变的更硬
- ▶ 乙醇/甲醇分解 导致分子量损失

燃油渗透测试设备

四、发动机周边非金属材料发展趋势 《 CHERY

涡轮增压技术的应用

汽车排放的要求越来越高,与传统的进气系统相比,带增压和中冷器的进气 系统,可以提高燃烧效率,减少尾气排放,小排量发动机替代大排量的发动机,减轻 了发动机和整车的质量,实现了轻量化。

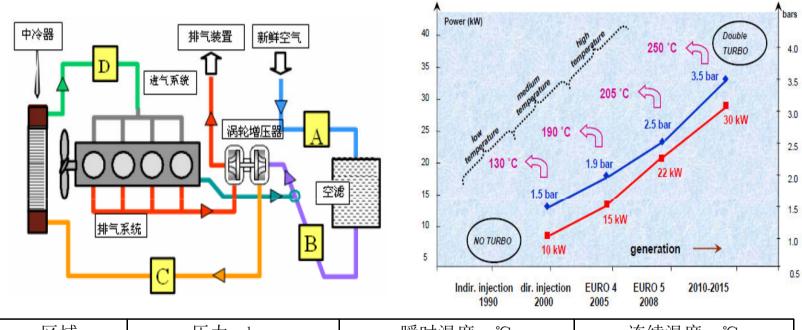
- > 经济效益 高油价, 提高燃油利用率
- ▶ 环境效益 减少排放

 $C0_2$

CO

 NO_{x}

HC


颗粒

涡轮增压进气系统提高了发动机仓的温度

区域	压力,bar	瞬时温度,℃	连续温度, ℃
A	0.9~1.0	50~100	40~80
В	$0.7 \sim 1.0$	50~100	40~80
С	2.5~4.0	150~230(柴油机)	100~200(柴油机)
C	1.8~2.5	100~160(汽油机)	80~120(汽油机)
D	2.5~4.0	100~150(柴油机)	80~130(柴油机)
D	1.8~2.5	80~120(汽油机)	60~100(汽油机)

五、发动机周边非金属材料轻量化方案 CHERY

轻量化应用案例---塑料悬置支架

支架塑料化的优势:

 \blacktriangleright 减重: 铝合金(30~50%), 铸铁(60~70%):

▶成本:铝合金(降低10%),铸铁(优势不大):

▶ 丁艺: 注塑一体化, 生产周期缩短、节约生产成本:

▶性能:不受腐蚀、无需表面处理;

弹性更好、NVH提升:

设计自由度大为提高:

部件质地更均匀、使用寿命更长:

材料特件:

材料	密度 g/cm³	价格 CNY/KG
铝合金	2. 7	18~20
铸铁	7.9	4~5
PA66玻纤增强	1.40~1.55	45~50

五、发动机周边非金属材料轻量化方案 CHERY

一体化设计-进气系统


对各组件制造工艺和成本进行分析,结构设计决定工艺类型,一体化的结构 设计,减少零件数量,缩短加工周期,减少后期装配工序,降低系统成本。

带波长管的引气管

带谐振腔的进气管

热塑性弹性体取代传统橡胶材料, 软硬段复合一体吹 塑成型实现部件集成、是未来进气软管的发展方向。

五、发动机周边非金属材料轻量化方案 CHERY

模块化组装一进气系统

集多种功能于一身的进气系统模块概念,成为进气系统的发展趋势,将最大程 度的降低系统成本。

集成部件:

- --进气歧管
- --空气滤清器
- --油轨

集成部件:

- --进气歧管
- --空气滤清器
- --油轨
- --燃油滤清器
- --转换阀系统
- --气门室罩盖
- --发动机装饰罩

小结

随着汽车技术的发展,发动机非金属材料的发展趋势是环保、高性能、轻量化和低成本。

环保、生物材料的使用率会越来越高

热塑性弹性体取代传统橡胶,提高整车回收利用率:

禁用物质的要求越来越严格,对于高风险的零部件需要重点关注,

比如:排气垫片,摩擦片;

高性能 发动机舱的温度越来越高,高性能(耐高温、耐介质)材料的需求将越来越大;

轻量化 为满足更高的轻量化目标,非金属材料的使用率会越来越高;

与短纤材料相比,具有更高比强度的长纤材料用量将越来越大;

低成本 与金属相比,塑料具有更高的设计自由度,系统模块化的程度会越来越高,以 最大程度降低整车系统成本。

感谢您的关注!

THANK YOU FOR YOUR ATTENTION!